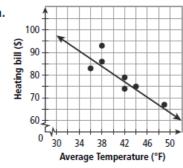
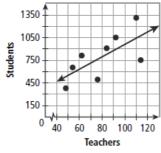
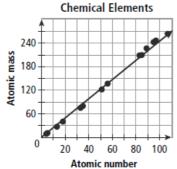

Warm up:


Find the line of best fit for the following points:

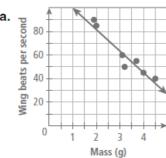
(1,3) (10, 45) (7, 29) (5, 15) (30, 100)


Positive; possible answer: $d \approx 30g$

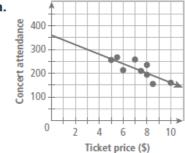
3a.



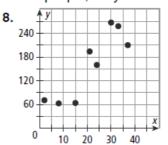
- **b.** $r \approx -0.864$; $h \approx -1.68t + 148.88$
- **c.** \$81.68; correlation coefficient is fairly close to -1, so the prediction is somewhat close to the actual value.


4a.

- **b.** $r \approx 0.679$; $y \approx 8.2x + 140.7$
- c. 56 teachers; the correlation coefficient is not very close to 1, so the number of teachers by itself is not a good predictor of the number of students in a school.
- 5. Possible answer: $w \approx 2.5n 5.5$

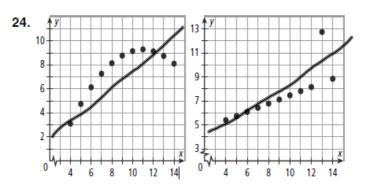


6a.



- **b.** $r \approx -0.961$; $w \approx 121.97 19.14m$
- c. -241.75 beats/s; not possible

7a.



- **b.** $r \approx -0.801$; $a \approx -20.95p + 368.89$
- c. 180 people; fairly accurate

Possible answer: $y = \frac{20}{3}x + 20$

16. No; e.g., there may be a third variable, such as temperature, that causes both variables to change.

r = 0.816 and y = 0.5x + 3 for both sets Possible answer: There may be a better model or an outlier.

Objectives

Solve compound inequalities.

Write and solve absolute-value equations and inequalities.

Vocabulary

disjunction conjunction absolute-value

A compound statement is made up of more than one equation or inequality.

A <u>disjunction</u> is a compound statement that uses the word *or*.

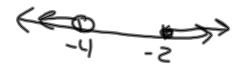
Disjunction: $x \le -3$ **OR** x > 2

Set builder notation: $\{x | x \le -3 \cup x > 2\}$

A disjunction is true if and only if at least one of its parts is true.

A <u>conjunction</u> is a compound statement that uses the word *and*.

Conjunction: $x \ge -3$ AND x < 2


Set builder notation: $\{x | x \ge -3 \cap x < 2\}$.

A conjunction is true if and only if all of its parts are true. Conjunctions can be written as a single statement as shown.

$$x \ge -3$$
 and $x < 2 \longrightarrow -3 \le x < 2$

To solve a compound inequality just solve each inequality for the variable and then using the "describing" word graph and then write the final inequality as your answer.

$$\frac{6y < -24 \text{ OR } y + 5 \ge 3}{\sqrt{9}}$$

$$2 \cdot \frac{1}{2}c \ge -2 \text{ AND } 2c + 1 < 1$$

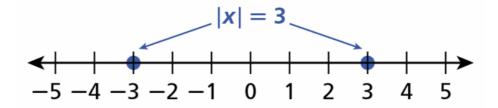
$$x - 5 < -2 \text{ OR } -2x \le -10$$

+5 +5 -2 -2

$$X < 3$$
 or $X \ge 5$

$$x - 2 < 1 \text{ OR } 5x \ge 30$$

$$x - 5 < 12$$
 OR $6x \le 12$


Recall that the **absolute value** of a number x, written |x|, is the distance from x to zero on the number line. Because absolute value represents distance without regard to direction, the absolute value of any real number is nonnegative.

Absolute Value

· · · · · · · · · · · · · · · · · · ·			
WORDS		NUMBERS	ALGEBRA
The absolute value of a x , $ x $, is equal to its distance zero on a number line.		5 = 5 -5 = 5	$ x = \begin{cases} x \text{ if } x \ge 0 \\ -x \text{ if } x < 0 \end{cases}$

Absolute-value equations and inequalities can be represented by compound statements. Consider the equation |x| = 3.

The solutions of |x| = 3 are the two points that are 3 units from zero. The solution is a disjunction: x = -3 or x = 3.

To solve an absolute value function:

- 1) Isolate the absolute value
- 2) Set what is inside the absolute value equal to the positive AND the negative versions of the answer.
- 3) Solve both equations.

Solve the equation.

$$|-3+k|=10$$

$$-3+k=10$$
 $-3+k=-10$ $k=13$ $k=-7$

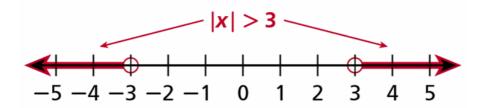
Solve the equation.

$$\begin{vmatrix} x \\ 4 \end{vmatrix} - 6 = -2$$

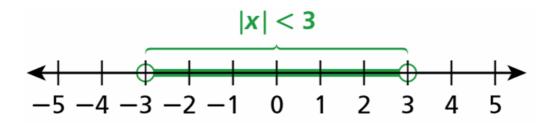
$$+ 6 + 6$$

$$\frac{x}{4} = 4$$
 $\frac{x}{4} = -4$ $x = -16$

Solve the equation.


$$|x + 9| = 13$$

Solve the equation.


$$|6x| - 8 = 22$$
18 18

 $|6x| = 30$
 $|6x| = 30$

The solutions of |x| > 3 are the points that are more than 3 units from zero. The solution is a disjunction: x < -3 or x > 3.

The solutions of |x| < 3 are the points that are less than 3 units from zero. The solution is a conjunction: -3 < x < 3.

Absolute-Value Equations and Inequalities

For all real numbers x and all positive real numbers a:

$$|x| = a$$

 $x = -a \text{ OR } x = a$

$$|x| < a$$

 $x > -a \text{ AND } x < a$
 $-a < x < a$

$$|x| > a$$

 $x < -a \text{ OR } x > a$

Note: The symbol \leq can replace <, and the rules still apply. The symbol \geq can replace >, and the rules still apply.

Helpful Hint

Think: Greator inequalities involving > or \ge symbols are disjunctions.

Think: Less thand inequalities involving < or ≤ symbols are conjunctions.

For absolute value inequalities:

- 1) Isolate the absolute value sign
- 2) *If greater than sign write a disjunction (or) *If less than sign write a conjunction (and).
- 3) Solve the inequality.

Solve the inequality. Then graph the solution.

$$|-4q+2|\geq 10$$

$$-48+2 \ge 10$$
 OR $-48+2 \le -10$
 $-2-2$
 $-48 \ge 8$
 $-48 \le -12$
 $8 \le -2$ OR
 $8 \ge 3$

$$|0.5r| - 3 \ge -3$$

Solve the inequality. Then graph the solution.

$$|4x - 8| > 12$$

Solve the inequality. Then graph the solution.

$$|3x| + 36 > 12$$

$$3\frac{|2x+7|}{3} \le 1.3$$

$$|2x+7| \le 3$$

$$2x+7 \ge 3$$

$$2x+7 \ge 3$$

$$2x+7 \ge 3$$

$$2x+2-10$$

$$x \ge -5$$

$$-\frac{1}{2}\big|\boldsymbol{\rho}-2\big|\geq 3$$

$$\frac{\left|x-5\right|}{2}\leq 4$$

$$-2|x+5| > 10$$

Homework:

p. 154 # 14-31, 36, 47, 59, 63