Warm Up

For each translation of the point (-2, 5), give the coordinates of the translated point.

- **1.** 6 units down (-2,-1)
- 2. 3 units right (1,5)

For each function, evaluate f(-2), f(0), and f(3).

3.
$$f(x) = x^2 + 2x + 6$$

4. $f(x) = 2x^2 - 5x + 1$
3. $f(x) = 2x^2 - 5x + 1$

Using Transformations to Graph Quadratic Functions

Objectives

Transform quadratic functions.

Describe the effects of changes in the coefficients of $y = a(x - h)^2 + k$.

Using Transformations to Graph Quadratic Functions

Vocabulary

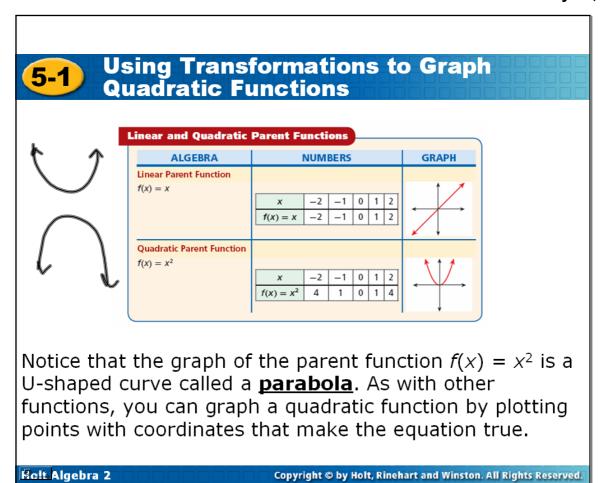
quadratic function parabola vertex of a parabola vertex form

Ficit Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

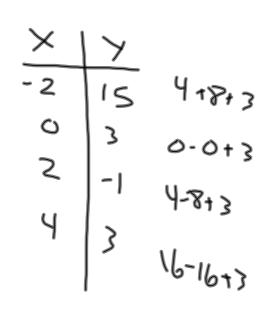
Using Transformations to Graph Quadratic Functions

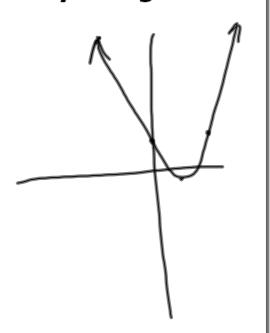
In Chapters 2 and 3, you studied linear functions of the form f(x) = mx + b. A **quadratic function** is a function that can be written in the form of $f(x) = a (x - h)^2 + k$ (a \neq 0). In a quadratic function, the variable is always squared. The table shows the linear and quadratic parent functions.



Like all other graphs, start by making a table of values and plotting them to get your U shaped curve. Be sure to use both positive and negative x-values.

Graph $f(x) = x^2 - 4x + 3$ by using a table.



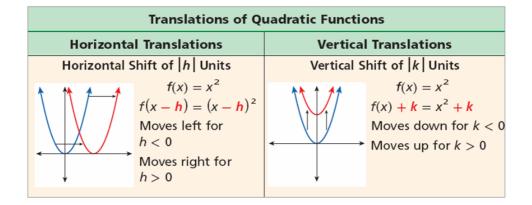


Graph $g(x) = -x^2 + 6x - 8$ by using a table.

5-1

Using Transformations to Graph Quadratic Functions

You can also graph quadratic functions by applying transformations to the parent function $f(x) = x^2$. Transforming quadratic functions is similar to transforming linear functions (Lesson 2-6).



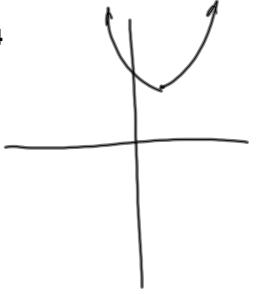
Ficit Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Transformations do not go away. When you add/subtract to your x-value then you are going left/right. When you add/subtract from your function the you are going up/down.

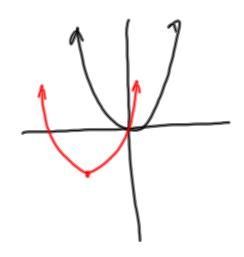
Use the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

$$g(x) = (x - 2)^2 + 4$$
 $Right 2$
 $UP 4$



Use the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

$$g(x) = (x + 2)^2 - 3$$

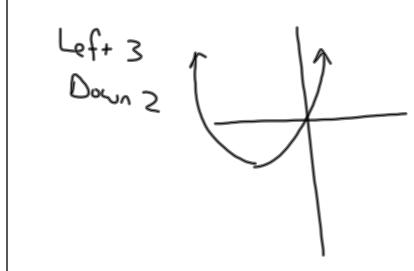


Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

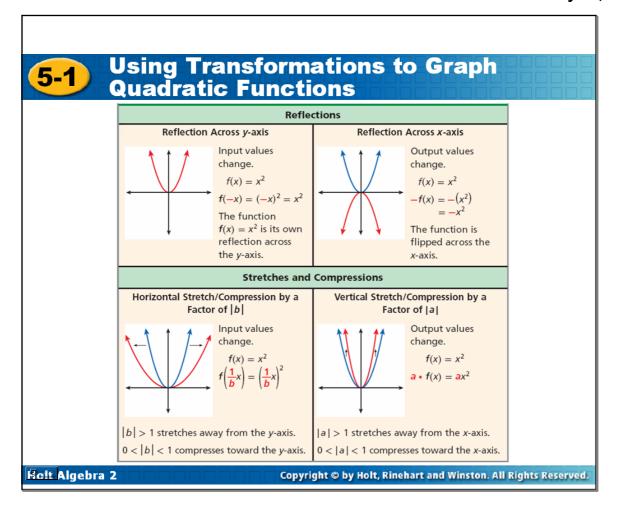
$$g(x) = x^2 - 5$$

Use the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

$$g(x) = (x + 3)^2 - 2$$



Lesson 5-1

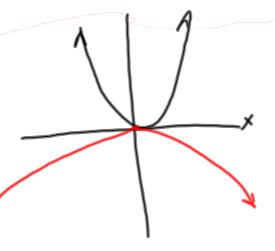


Identify each transformation to help sketch a graph more quickly.

Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

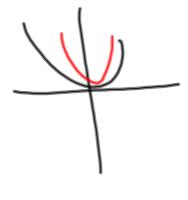
$$g(x) = -\frac{1}{4}x^2$$

Reflect over X Verical Comp. &



Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

$$g(x) = (3x)^2$$



Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

$$g(x) = (2x)^2$$

Using the graph of $f(x) = x^2$ as a guide, describe the transformations and then graph each function.

$$g(x) = -\frac{1}{2} x^2$$

Vert Stretch: 1/2 Reflect over X

5-1

Using Transformations to Graph Quadratic Functions

If a parabola opens upward, it has a lowest point. If a parabola opens downward, it has a highest point. This lowest or highest point is the **vertex of the parabola**.

The parent function $f(x) = x^2$ has its vertex at the origin. You can identify the vertex of other quadratic functions by analyzing the function in vertex form. The **vertex form** of a quadratic function is $f(x) = a(x - h)^2 + k$, where a, h, and k are constants.

Met Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Using Transformations to Graph Quadratic Functions

Vertex Form of a Quadratic Function

$$f(x) = a(x-h)^2 + k$$

a indicates a reflection across the x-axis and/or a vertical stretch or compression.

h indicates a horizontal translation. k indicates a vertical translation.

Because the vertex is translated h horizontal units and k vertical from the origin, the vertex of the parabola is at (h, k).

Helpful Hint

When the quadratic parent function $f(x) = x^2$ is written in vertex form, $y = a(x - h)^2 + k$, a = 1, h = 0, and k = 0.

Roll Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Identify each value, plug them into the vertex formula and then simplify if you can.

Use the description to write the quadratic function in vertex form.

The parent function $f(x) = x^2$ is vertically stretched by a factor of $\frac{4}{3}$ and then translated 2 units left and 5 units down to create g.

$$\frac{4}{3}(x+2)^{2}-5$$

Use the description to write the quadratic function in vertex form.

The parent function $f(x) = x^2$ is vertically compressed by a factor of $\frac{1}{3}$ and then translated 2 units right and 4 units down to create g.

$$\frac{1}{3}(x-2)^2-4$$

Write a transformed parabola in vertex form and have a partner identify the transformations.

Use the description to write the quadratic function in vertex form.

The parent function $f(x) = x^2$ is reflected across the x-axis and translated 5 units left and 1 unit up to create q.

$$a:-1$$
 $-(x+5)^2+1$
 $b:+5$
 $k:+1$

Homework:

p. 320 #17-30, 32, 39-41, 43, 46-49