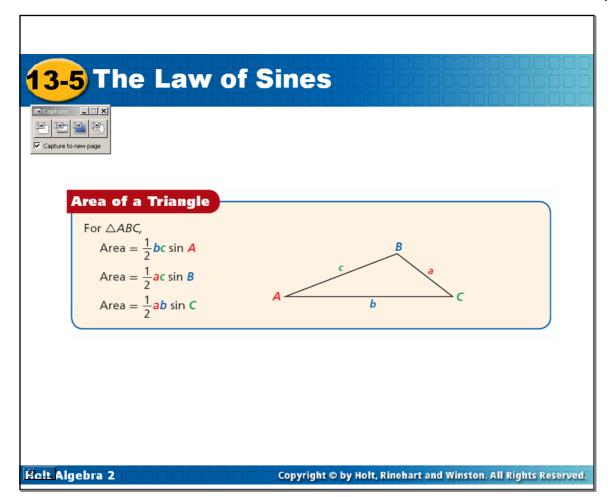
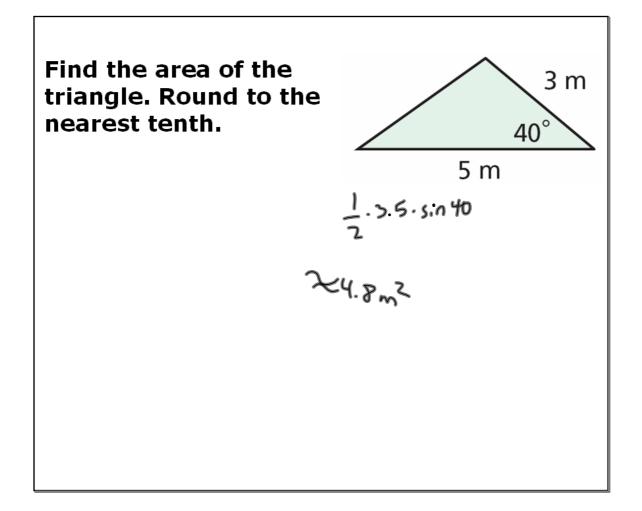
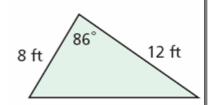

Warm Up:

A road has a 5% grade, which means that there is a 5 ft rise for 100 ft of horizontal distance. At what angle does the road rise from the horizontal? Round to the nearest tenth of a degree.


13-5 The Law of Sines

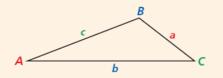


Objectives


Determine the area of a triangle given side-angle-side information.

Use the Law of Sines to find the side lengths and angle measures of a triangle.

Find the area of the triangle. Round to the nearest tenth.


13-5 The Law of Sines

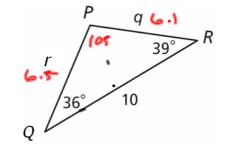
Law of Sines

For $\triangle ABC$, the Law of Sines states that

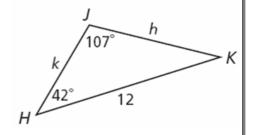
$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}.$$

13-5 The Law of Sines

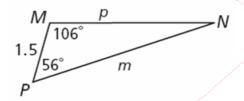
The Law of Sines allows you to solve a triangle as long as you know either of the following:


- Two angle measures and any side length– angle-angle-side (AAS) or angle-side-angle (ASA) information
- 2. Two side lengths and the measure of an angle that is not between them-side-side-angle (SSA) information

Rct Algebra 2


Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Solve the triangle. Round to the nearest tenth.


Solve the triangle. Round to the nearest tenth.

Solve the triangle. Round to the nearest tenth.

Solve the triangle. Round to the nearest tenth.

13-6 The Law of Cosines

Objectives

Use the Law of Cosines to find the side lengths and angle measures of a triangle.

Use Heron's Formula to find the area of a triangle.

13-6 The Law of Cosines

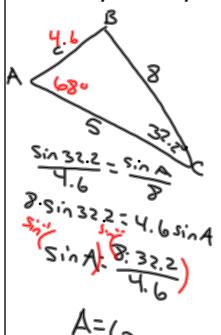
Law of Cosines

For $\triangle ABC$, the Law of Cosines states that

$$a^2 = b^2 + c^2 - 2bc\cos A$$
.

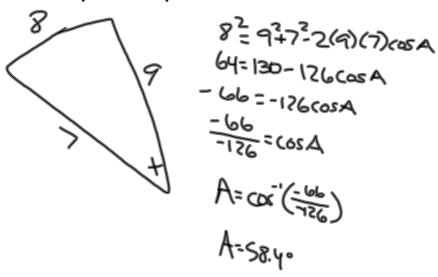
$$b^2 = a^2 + c^2 - 2ac\cos B$$
.

$$c^2 = a^2 + b^2 - 2ab\cos C$$
.

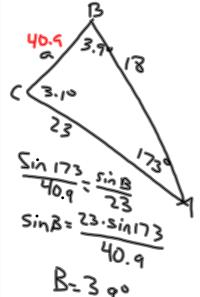


Roll Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.


Use the given measurements to solve $\triangle ABC$. Round to the nearest tenth.

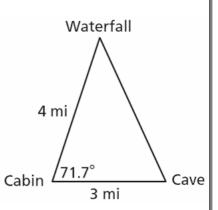
$$a = 8, b = 5, m\angle C = 32.2^{\circ}$$


Use the given measurements to solve $\triangle ABC$. Round to the nearest tenth.

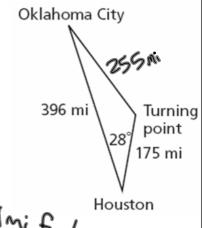
$$a = 8, b = 9, c = 7$$

Use the given measurements to solve $\triangle ABC$. Round to the nearest tenth.

$$b = 23$$
, $c = 18$, m $\angle A = 173$ °



Use the given measurements to solve $\triangle ABC$. Round to the nearest tenth.


$$a = 35, b = 42, c = 50.3$$

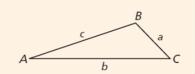
If a hiker travels at an average speed of 2.5 mi/h, how long will it take him to travel from the cave to the waterfall? Round to the nearest tenth of an hour.

$$a^{2}=4^{2}+3^{2}-2(4)(3)\cos 71.7$$
 $a^{2}=25-24\cos 71.7$
 $a^{2}=17$
 $a=4.2m$

A pilot is flying from
Houston to Oklahoma City.
To avoid a thunderstorm,
the pilot flies 28° off the
direct route for a distance
of 175 miles. He then
makes a turn and flies
straight on to Oklahoma
City. To the nearest mile,
how much farther than the
direct route was the route
taken by the pilot?

a=396717522(396)(175)(0528

13-6 The Law of Cosines



The Law of Cosines can be used to derive a formula for the area of a triangle based on its side lengths. This formula is called Heron's Formula.

Heron's Formula

For $\triangle ABC$, where s is half of the perimeter of the triangle, or $\frac{1}{2}(a+b+c)$,

Area =
$$\sqrt{s(s-a)(s-b)(s-c)}$$

A garden has a triangular flower bed with sides measuring 2 yd, 6 yd, and 7 yd. What is the area of the flower bed to the nearest tenth of a square yard?

$$S = \frac{1}{5}(6+7+2)$$

The surface of a hotel swimming pool is shaped like a triangle with sides measuring 50 m, 28 m, and 30 m. What is the area of the pool's surface to the nearest square meter?

$$S = \frac{1}{2}(50+30+28)$$

 $S = 54$
 $A = \sqrt{54(4)(24)(28)}$
 $= 381m^2$

Homework:

- p. 963 #14-19, 25-29, 43-44, 46
- p. 971 #9-14, 17-22, 33, 38-41