Warm Up (h,K) (x-h)2+(y-k)2=12

1. Write an equation for the circle with center (1, -5) and a radius of $\sqrt{10}$.

2. Write an equation for the circle with center (-4, 4) and containing the point (-1, 16).

10-3 Ellipses

Objectives

Write the standard equation for an ellipse.

Graph an ellipse, and identify its center, vertices, co-vertices, and foci.

Lesson 10-3 February 20, 2013

10-3 Ellipses

Vocabulary

ellipse
focus of an ellipse
major axis
vertices of an ellipse
minor axis
co-vertices of an ellipse

Ficit Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

10-3 Ellipses

If you pulled the center of a circle apart into two points, it would stretch the circle into an ellipse.

An **ellipse** is the set of points P(x, y) in a plane such that the sum of the distances from any point P on the ellipse to two fixed points F_1 and F_2 , called the **foci** (singular: focus), is the constant sum $d = PF_1 + PF_2$. This distance d can be represented by the length of a piece of string connecting two pushpins located at the foci.

You can use the distance formula to find the constant sum of an ellipse.

Fic!t Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Use the fact that an ellipse has a constant sum and therefore $d=PF_1 + PF_2$, where each part is using the distance formula with the point and the focus

Find the constant sum for an ellipse with foci F_1 (3, 0) and F_2 (24, 0) and the point on the ellipse (9, 8).

$$d = PF_{1} + PF_{2}$$

$$d = \int (9-3)^{2} + (8-0)^{2} + \int (4-24)^{2} + (8-0)^{2}$$

$$= \int (6^{2} + 8^{2}) + \int (-15^{2} + 8^{2}) + \int (-15^$$

Find the constant sum for an ellipse with foci $F_1(0, -8)$ and $F_2(0, 8)$ and the point on the ellipse (0, 10).

$$d = PF_{1} + PF_{2}$$

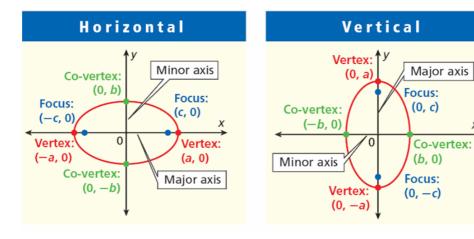
$$= 18 + 2$$

$$= 18^{2} + \sqrt{2^{2}}$$

$$= 18^{2} + \sqrt{2^{2}}$$

$$= 18^{2} + \sqrt{2^{2}}$$

$$= 18^{2} + \sqrt{2^{2}}$$


10-3 Ellipses

Instead of a single radius, an ellipse has two axes. The longer the axis of an ellipse is the **major axis** and passes through both foci. The endpoints of the major axis are the **vertices of the ellipse**. The shorter axis of an ellipse is the **minor axis**. The endpoints of the minor axis are the **co-vertices of the ellipse**. The major axis and minor axis are perpendicular and intersect at the center of the ellipse.

Lesson 10-3 February 20, 2013

10-3 Ellipses

The standard form of an ellipse centered at (0, 0) depends on whether the major axis is horizontal or vertical.

Ficit Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

10-3 Ellipses

The values a, b, and c are related by the equation $c^2 = a^2 - b^2$. Also note that the length of the major axis is 2a, the length of the minor axis is 2b, and a > b.

Standard Form for the Equation of an Ellipse $(0, 0)$		
MAJOR AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$
Vertices	(a, 0), (-a, 0)	(0, <mark>a</mark>), (0, – a)
Foci	(c, 0), (-c, 0)	(0, c), (0, -c)
Co-vertices	(0, b), (0, -b)	(b , 0), (- b , 0)

Relt Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

To write the equation of an ellipse there are 3 steps:

- 1) Pick the right equation, this is based on whether the major axis is horizontal or vertical
 - -Do the vertices occur on the x or y axis?
- 2) Identify a and b values
- 3) Write the equation

Write an equation in standard form for each ellipse with center (0, 0).

Vertex at (6, 0); co-vertex at (0, 4)

a=6
Horz Ellipse
$$b=4$$

$$\frac{x^{2}}{a^{2}} + \frac{x^{2}}{b^{2}} = 1$$

$$\frac{x^{3}}{36} + \frac{x^{2}}{16} = 1$$

Write an equation in standard form for each ellipse with center (0, 0).

Co-vertex at (5, 0); focus at (0, 3)

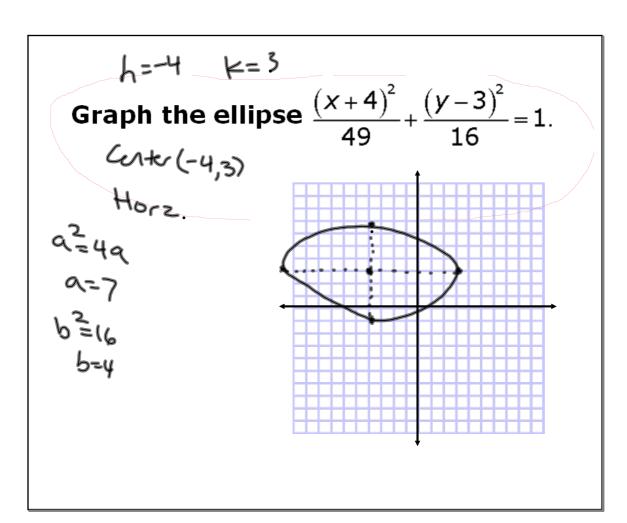
$$a: \sqrt{34}$$
 $b: 5$
 $C: 3$
 $V: U+ices$
 $C = a^2 - b^2$
 $V: U+ices$
 $V: U+ices$

Write an equation in standard form for each ellipse with center (0, 0).

Vertex at (9, 0); co-vertex at (0, 5)

Write an equation in standard form for each ellipse with center (0, 0).

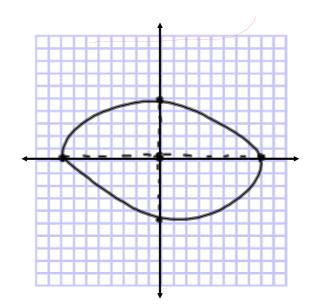
Co-vertex at (4, 0); focus at (0, 3)


$$a = 5$$
 $b = 4$
 $C = 3$
 $c = a^{2} - b^{2}$
 $q = a^{2} - 16$
 $q = 25$
 $q = 3$
 $q = 3$
 $q = 3$
 $q = 3$

10-3 Ellipses

Ellipses may also be translated so that the center is not the origin.

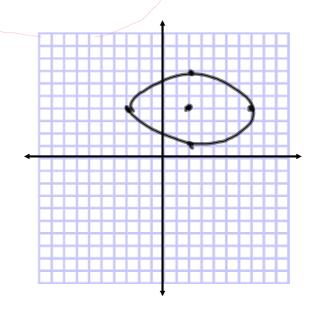
MAJOR AXIS	HORIZONTAL	VERTICAL
Equation	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} + \frac{(x-h)^2}{b^2} = 1$
Vertices	(h + a, k), (h - a, k)	(h, k + a), (h, k - a)
Foci	(h+c,k),(h-c,k)	(h, k + c), (h, k - c)
Co-vertices	(h, k + b), (h, k - b)	$(h + \mathbf{b}, k), (h - \mathbf{b}, k)$


To graph identify the transformations that would move the center then accurately plot the vertices and connect in an elliptical shape.

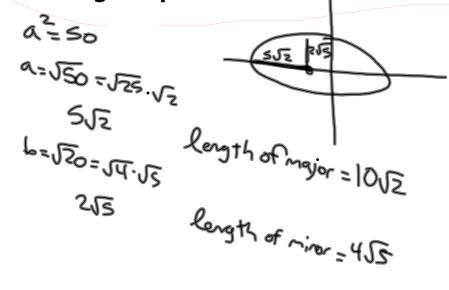
Lesson 10-3

Graph the ellipse
$$\frac{x^2}{64} + \frac{y^2}{25} = 1$$
.

Center (0p) Horz. $a^2 = 64$ a = 8 $b^2 = 85$ b = 5



Graph the ellipse.


$$\frac{(x-2)^2}{25} + \frac{(y-4)^2}{9} = 1$$

Centu(2,4) Horz.

6:3

A city park in the form of an ellipse with equation $\frac{x^2}{50} + \frac{y^2}{20} = 1$, measured in meters, is being renovated. The new park will have a length and width double that of the original park.

Find the dimensions of the new park.

Major =
$$20\sqrt{2}$$

Minor = $8\sqrt{5}$
 $b=4\sqrt{5}$
 $b^2=16.5=80$
 $\sqrt{2}$
 $\sqrt{2}$

B. Write an equation for the design of the new park.

Homework:

p. 740 #13-25, 27-29, 38-39, 42