### **Warm Up**

Solve for y.

**1.** 
$$x^2 + y^2 = 1$$
  $y = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$ 

2. 
$$4x^{2} - 9y^{2} = 1$$

$$-9y^{2} - 4x^{2} + 1$$

$$y^{2} - 4x^{2} + 1$$

$$y^{2} - 4x^{2} + 1$$

$$y^{2} - 4x^{2} + 1$$

## 10-1 Introduction to Conic Sections

## **Objectives**

Recognize conic sections as intersections of planes and cones.

Use the distance and midpoint formulas to solve problems.



#### **Introduction to Conic Sections**

## Vocabulary

conic section

Roll Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

### **10-1** Introduction to Conic Sections

In Chapter 5, you studied the parabola. The parabola is one of a family of curves called conic sections. Conic **sections** are formed by the intersection of a double right cone and a plane. There are four types of conic sections: circles, ellipses, hyperbolas, and parabolas.



Although the parabolas you studied in Chapter 5 are functions, most conic sections are not. This means that you often must use two functions to graph a conic section on a calculator.

Relt Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Lesson 10-1 February 13, 2013

## 10-1 Introduction to Conic Sections

A circle is defined by its center and its radius. An ellipse, an elongated shape similar to a circle, has two perpendicular axes of different lengths.

#### Remember!

When you take the square root of both sides of an equation, remember that you must include the positive and negative roots.

**Ficit** Algebra 2

To graph equations on a calculator:

- 1) Solve for y, make sure to include the positive and negative roots
- 2) Use the y= function on the calculator to see the curve

Graph each equation on a graphing calculator. Identify each conic section. Then describe the center and intercepts.

$$(x-1)^{2} + (y-1)^{2} = 1$$

$$-(x-1)^{2}$$

$$-(x-1)^{2}$$

$$(x-1)^{2}$$

$$-(x-1)^{2}$$

$$(x-1)^{2}$$

$$4x^{2} + 25y^{2} = 100$$

$$25y^{2} = 100 - 4x^{2}$$

$$y^{2} = \frac{100 - 4x^{2}}{25}$$

$$Center: (0,0)$$

$$1 = \frac{100 - 4x^{2}}{25}$$

$$Center: (0,0)$$

$$1 = \frac{100 - 4x^{2}}{25}$$

$$(0,2) = \frac{100 - 4x^{2}}{25}$$

$$(0,3) = \frac{100 - 4x^{2}}{25}$$

$$(0,5) = \frac{100 - 4x^{2}}{25}$$

Graph each equation on a graphing calculator. Identify each conic section. Then describe the center and intercepts.

$$x^{2} + y^{2} = 49$$

$$y = \pm \sqrt{1/9 - x^{2}}$$
Circle
$$(0,7)(0,-7)$$

$$(7,0)(-7,6)$$

$$9x^2 + 25y^2 = 225$$

# 10-1

## **Introduction to Conic Sections**

A parabola is a single curve, whereas a hyperbola has two congruent branches. The equation of a parabola usually contains either an  $x^2$  term or a  $y^2$ term, but not both. The equations of the other conics will usually contain both  $x^2$  and  $y^2$  terms.

#### **Helpful Hint**

Because hyperbolas contain two curves that open in opposite directions, classify them as opening horizontally, vertically, or neither.

Molt Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Graph each equation on a graphing calculator. Identify each conic section. Then describe the vertices and the direction that the graph opens.

$$y = -\frac{1}{2}x^2$$

Parabola Opens down (0,0)



$$y^{2} - x^{2} = 9$$
 $Y = \pm \sqrt{x^{2} + 9}$ 
Hyperbola
(0,3) (0,-3)
Upens vertically

Graph each equation on a graphing calculator. Identify each conic section. Then describe the vertices and the direction that the graph opens.

$$2y^2 = x$$

$$x^2 - y^2 = 16$$

# 10-1 Introduction to Conic Sections

Every conic section can be defined in terms of distances. You can use the Midpoint and Distance Formulas to find the center and radius of a circle.



Relt Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

# 10-1

#### **Introduction to Conic Sections**

Because a diameter must pass through the center of a circle, the midpoint of a diameter is the center of the circle. The radius of a circle is the distance from the center to any point on the circle and equal to half the diameter.



#### **Helpful Hint**

The midpoint formula uses averages. You can think of  $x_M$  as the average of the x-values and  $y_M$  as the average of the y-values.

Roll Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved

A radius is how much of a diameter?

To find a length, use the distance formula!

Find the center and radius of a circle that has a diameter with endpoints (5, 4) and (0, -8).



Find the center and radius of a circle that has a diameter with endpoints (2, 6) and (14, 22).

(8,14) 
$$\frac{2}{(14-5)^2+(15-6)^2}$$
 (8,14)  $\frac{2}{(14-5)^2+(15-6)^2}$ 

# Find the center and radius of a circle that has a diameter with endpoints (3, 7) and (-2, -5).

$$(3,7)(\frac{1}{2},1)$$
Center:
$$(3+\frac{1}{2},\frac{7+6}{2})$$

$$(\frac{3+\frac{1}{2}}{2},\frac{7+6}{2})$$

$$(\frac{1}{2},1)$$

$$(3,7)(\frac{1}{2},1)$$

$$(3-\frac{1}{2})^{2}+(7-1)^{2}$$

$$(2.5)^{2}+(3)^{2}$$

$$(\frac{1}{2},1)$$

$$\sqrt{6.25+36}$$

$$-6.5$$

#### Homework:

p. 726 #14-34(even), 37-40, 43-44, 46-48, 50-53