Warm Up:

Give an example of a function and a non-function using points.

$$(3,2)$$
 $(2,1)$ $(2,3)$ $(2,3)$

Give an example of a function and a non-function using graphs.

Quote for this week:

"Even a mistake may turn out to be the one thing necessary to a worthwhile achievement."

-Henry Ford

Answers:

- **11.** function; Each value in the domain is mapped to only one value in the range.
- **12.** not a function; The value 3 is mapped onto two values, 1 and 0.
- **13.** not a function; Possible answer: (1, 1) and (1, -1).
- 14. function

15. function

- **22.** D: {-1, 0, 1, 2, 3} R: {-1, 1, 3} function; For every *x*-value there is only one *y*-value.
- 23. D: {a, b, c, d} R: {1, 2, 4} function; For each letter there is only one corresponding number
- 24. D: {7}
 R: {1, 2, 3, 4, 6}
 not a function; The domain value 7 is mapped onto 5 range values.
- **25.** D: {1, 3, 5, 7, 9}
 R: {3}
 function; For every *x*-value there is only one *y*-value.

38. Statement A is incorrect; Possible answer: the input value 0 is paired with 2 output values, which violates the definition of a function.

Function Notation

Objectives

Write functions using function notation.

Evaluate and graph functions.

1-7

Function Notation

Vocabulary

function notation dependent variable independent variable

Roll Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Function Notation

Some sets of ordered pairs can be described by using an equation. When the set of ordered pairs described by an equation satisfies the definition of a function, the equation can be written in **function notation**.

f(x)

Ficit Algebra 2

Output value Input value Output value Input value f(x) = 5x + 3 f(1) = 5(1) + 3

f of x equals 5 times x plus 3. f of 1 equals 5 times 1 plus 3.

Ficit Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

f(x) is the exact same thing as y. Don't let the different looks confuse you, they mean the same thing.

Look at f(x) = 3 + x and y = 3 + xIf we plug in 1, 2, or any other number for x we get the same thing...

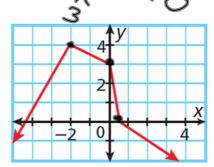
Function Notation

Example 1A: Evaluating Functions

f(-2). f(x) = 8 + 4x $f(\frac{1}{2}) = 8 + 4x$ $f(\frac{1}{2}) = 8 + 4x$ $f(\frac{1}{2}) = 8 + 4x$ $f(\frac{1}{2}) = 10$ For each function, evaluate f(0), $f\left(\frac{1}{2}\right)$, and

$$f(x) = 8 + 4x$$

Roll Algebra 2


Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Function Notation

Example 1B: Evaluating Functions

For each function, evaluate f(0), $f(\frac{1}{2})$, f(-2). f(-2).

Roll Algebra 2

1-7

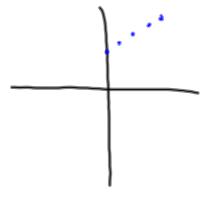
Function Notation

In the notation f(x), f is the *name* of the function. The output f(x) of a function is called the

- \nearrow dependent variable because it depends on the input value of the function. The input x is called the
- Xindependent variable. When a function is graphed, the independent variable is graphed on the horizontal axis and the dependent variable is graphed on the vertical axis.

Ficit Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

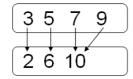


Function Notation

Example 2A: Graphing Functions

Graph the function.

 $\{(0,4),(1,5),(2,6),(3,7),(4,8)\}$


Ficit Algebra 2

Function Notation

Check It Out! Example 2a

Graph the function.

Ficit Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Function Notation

The algebraic expression used to define a function is called the function rule. The function described by f(x) = 5x + 3 is defined by the function rule 5x + 3. To write a function rule, first identify the independent and dependent variables.

Ficit Algebra 2

1-7

Function Notation

Example 3A: Entertainment Application

A carnival charges a \$5 entrance fee and \$2 per ride.

Write a function to represent the total cost after taking a certain number of rides.

Roll Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Function Notation

Check It Out! Example 3b

A local photo shop will develop and print the photos from a disposable camera for \$0.27 per print.

What is the value of the function for an input of 24, and what does it represent?

Relt Algebra 2

Objectives

Apply transformations to points and sets of points.

Interpret transformations of real-world data.

Roll Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

1-8 Exploring Transformations

Vocabulary

transformation translation reflection stretch compression

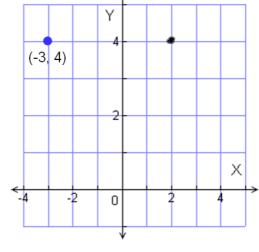
Ficit Algebra 2

A **transformation** is a change in the position, size, or shape of a figure.

A **translation**, or slide, is a transformation that moves each point in a figure the same distance in the same direction.

Molt Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

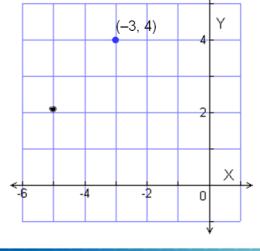

1-8 Exploring Transformations

Example 1A: Translating Points

Perform the given translation on the point (-3, 4). Give the coordinates of the translated point.

5 units right

(54)

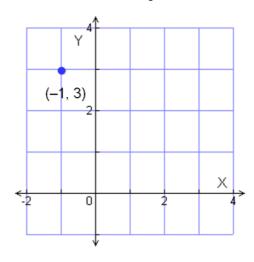

Roll Algebra 2

Example 1B: Translating Points

Perform the given translation on the point (-3, 4). Give the coordinates of the translated point.

2 units left and 2 units down

Roll Algebra 2

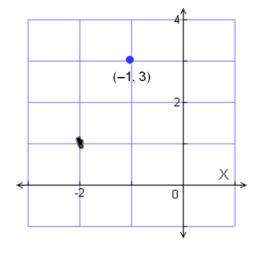

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

1-8 Exploring Transformations

Check It Out! Example 1a

Perform the given translation on the point (-1, 3). Give the coordinates of the translated point.

4 units right



Relt Algebra 2

Check It Out! Example 1b

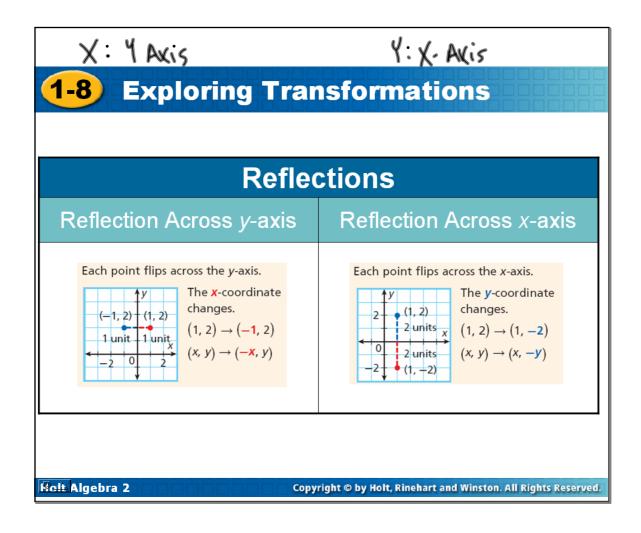
Perform the given translation on the point (-1, 3). Give the coordinates of the translated point.

1 unit left and 2 units down

Fic!t Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

1-8 Exploring Transformations


Notice that when you translate **left or right**, the **x-coordinate** changes, and when you translate **up or down**, the **y-coordinate** changes.

Translations Vertical Translation Horizontal Translation Each point shifts up or down by a Each point shifts right or left by a number of units. number of units. The X-coordinate The **y**-coordinate (1, 4) changes. changes. 2 units (1, 2) (4, 2) $(1, 2) \rightarrow (1 + 3, 2)$ $(1, 2) \rightarrow (1, 2 + 2)$ 3 units $(x, y) \rightarrow (x + h, y)$ $(x, y) \rightarrow (x, y + k)$ left if h < 0right if h > 0down if k < 0up if k > 0

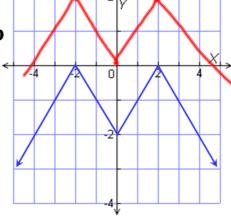
Fic!t Algebra 2

A <u>reflection</u> is a transformation that flips a figure across a line called the line of reflection. Each reflected point is the same distance from the line of reflection, but on the opposite side of the line.

Relt Algebra 2

You can transform a function by transforming its ordered pairs. When a function is translated or reflected, the original graph and the graph of the transformation are *congruent* because the size and shape of the graphs are the same.

Roll Algebra 2

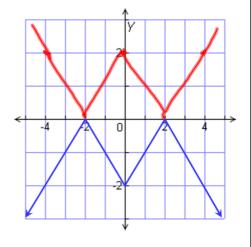

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

1-8 Exploring Transformations

Example 2A: Translating and Reflecting Functions

Use a table to perform each transformation of y=f(x). Use the same coordinate plane as the original function.

translation 2 units up



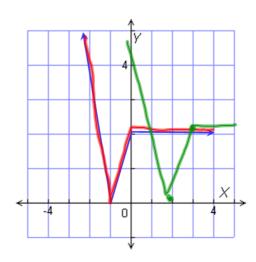
Fic!t Algebra 2

Lesson 1-7 and 1-8A December 10, 2012

1-8 Exploring Transformations

Example 2B: Translating and Reflecting Functions reflection across *x*-axis

Relt Algebra 2

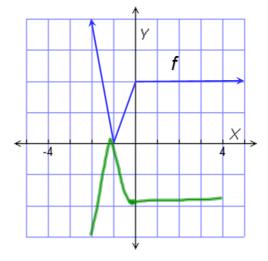

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

1-8 Exploring Transformations

Check It Out! Example 2a

Use a table to perform the transformation of y = f(x). Use the same coordinate plane as the original function.

translation 3 units right

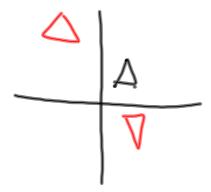

The entire graph shifts 3 units right.

Reft Algebra 2

Check It Out! Example 2b

Use a table to perform the transformation of y = f(x). Use the same coordinate plane as the original function.

reflection across x-axis


Multiply each y-coordinate by −1.

Relt Algebra 2

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Plot at least 3 points. Now with those points translate them: 2 units to the right, 3 units up and then reflect them over the y-axis.

Have your partner check your work.

Homework

p. 54 #12-17, 45-48

p. 63 # 5-7, 44

Present: 48, p. 65 #44